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Abstract. A hierarchical froth model of the interface of a randomq-state Potts ferromagnet in2D

is studied by recursive methods. A fractionp of the nearest-neighbour bonds is made inaccessible
to domain walls by infinitely strong ferromagnetic couplings. Energetic and geometric scaling
properties of the interface are controlled by zero-temperature fixed distributions. Forp < pc,
the directed percolation threshold, the interface behaves as forp = 0, and scaling supports
random Ising (q = 2) critical behaviour for allq ’s. At p = pc three regimes are obtained for
different rates of ferro versus antiferromagnetic couplings. With rates above a threshold value
the interface is linear (fractal dimensiondf = 1) and its energy fluctuations,1E scale with
length as1E ∝ Lω, with ω ' 0.48. When the threshold is reached the interface branches at
all scales and is fractal (df ' 1.046) with ωc ' 0.51. Thus, atpc, dilution modifies both low-
temperature interfacial properties and critical scaling. Below threshold the interface becomes a
probe of the backbone geometry (df ' d̄ ' 1.305; d̄ = backbone fractal dimension), which even
controls energy fluctuations (ω ' df ' d̄). Numerical determinations of directed percolation
exponents on diamond hierarchical lattice are also presented.

1. Introduction

The effects of quenched disorder due to random impurities on phase transitions are often non-
trivial and have long represented an active field of research. According to a simple Harris
criterion [1], disorder is relevant to continuous phase transitions with positive specific heat
exponent. The presence of impurities can also change first-order transitions into second
order, and typically has rounding effects upon them [2, 3]. Numerical and experimental
evidence exists [4, 5] that in some random systems, like Potts ferromagnets, the critical
behaviour falls into the random-bond Ising model (RBIM) universality class, irrespective of
the different symmetry they possess. Recently, a justification of this possible universality
has been proposed, based on the analysis of the behaviour of critical interfaces in the
presence of strong disorder [6].

The interfacial free energy is indeed crucial to second-order phase transitions since it
vanishes in a singular way at the critical point.RBIM interfaces have been successfully
investigated within the solid-on-solid (SOS) model, which ignores overhangs and islands
near the interface [7]. This model is equivalent to the directed polymer in random medium
(DPRM) [8], which reduces to an optimization problem of path energies, atT = 0.

Theq-state Potts model generalizes the Ising one with itsSq symmetry. When the model
undergoes continuous phase transitions, Potts interfaces are complicated branched objects
which become fractal at criticality, in the pure case. The so-called ‘froth model’ has been
introduced as a simplified description of those interfaces [6]. This model represents a non-
trivial generalization of theDPRM and provides a possible mechanism for the explanation of
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the puzzling universality in the strongly disordered Potts model at criticality. The realization
of the froth model on a diamond hierarchical lattice (DHL) in the presence of coupling
constant randomness is the only context where the hard computational difficulties connected
with its study could be successfully faced so far. Indeed, onDHL the model is amenable to an
accurate position-space renormalization-group analysis yielding deep insight into interfacial
scaling properties [6].

A variant to the DPRM has been recently obtained through the introduction of a
geometrical disorder represented by bond dilution [9], which shows itself to be an implicit
source of randomness for path energy distributions. Dilution, conceived as the presence
of a fraction of bonds inaccessible by the polymer, modifies or leaves unaffectedDPRM

critical behaviour depending on whether the concentration of present (accessible) bonds is
at or above the directed percolation threshold, respectively. The structure of the underlying
directed bond percolation cluster governs the scaling behaviour of the model right at the
critical threshold [9].

Interest in investigating the effects of a similar dilution on the froth interface model of
[6] is suggested by different considerations. As theDPRM can describe fracture [10], the
froth interface can also be seen as realizing a more complicated pattern of fracture, with
the possibility of branching and loop formation in the cracks. Dilution can thus represent
in both cases the effects of hard inclusions through which cracks cannot propagate, in an
inhomogeneous material. In some systems like3He–4He mixtures in the pores of aerogels,
dense coatings of4He are formed on the surface of the aerogel structure [11]. The higher
density considerably enhances the interaction between4He atoms. This effect adds to a more
general introduction of disorder in the interactions. One expects that enhanced exchange
interactions around the aerogel prevent penetration of the interface associated with the
superfluid transition in the aerogel†. The space regions occupied by the aerogel and its
coating can again be seen as inclusions with very hard coupling for the interface.

These examples suggested we consider a diluted generalization to the froth interfacial
model of [6], by allowing lattice bonds to be absent, i.e. inaccessible to the interface, with
a finite probability. As in [9], here we choose a percolative dilution geometry, which is of
course rather different from that of the aerogels case.

Dilution, especially at percolation threshold, is an obvious candidate to possibly
introduce new universality classes of interfacial scaling behaviour. This is most important
for branching interfaces in a random environment, because their study is still at a very
preliminary stage [6].

A further motivation for diluting the froth interface model comes from the legitimate
hope that some of its scaling properties at the percolation threshold could be more or less
directly related to the geometry of the critical percolation cluster.

This paper is organized as follows. In section 2 we introduce the froth model of the
Potts interface and set up an iterative renormalization-group (RG) analysis for its study on
hierarchical lattice. We discuss, in particular, the specific features implied by the presence
of dilution. In section 3 we present our results for several regimes of dilution. Section 4 is
devoted to a summary and to concluding remarks.

2. Diluted model of the Potts interface

The interface between two distinct ordered phases of a2D random-bondq-state Potts
ferromagnet at very low temperature is a slightly fluctuating line. Raising the temperature

† In a Bulme–Emery–Griffiths description (see [11]) this interface is like an Ising+/− domain wall.
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Figure 1. (a) The construction rule of the diamond hierarchical lattice. At every stage each
bond is replaced by a four-bond cell. (b) The DHL at its second stage.

to approach its critical value, bubbles of any of the otherq − 2 states may form at the
interface; neglecting isolated islands and overhangs, as inSOSmodels of Ising surfaces, we
are left to consider an aggregate of bubbles, the froth, each bounded by twoSOS surfaces.
This froth represents the original interface. In a random-bond Potts problem the interface
crosses (breaks) bonds with random couplings, thus getting a random energy contribution at
each step. In addition to random couplings, here we suppose there exist, with probabilityp,
steps inaccessible to the interface (dilution).

Even starting from the above simplified picture, the corresponding interfacial model is
too hard to analyse. By confining the interface to the bonds of theDHL shown in figure 1,
we obtain a simplified version of the froth model, where a position spaceRG strategy can
be worked out. This model was already studied in [6] in the undiluted case (p = 0), with
only random exchange effects.

The interface partition function,Zn, on the diamond hierarchical lattice at itsnth
construction stage (longitudinal lengthL = 2n) is calculated iteratively. In the pure case
(no randomness and no dilution),

Zn+1 = 2Z2
n + (q − 2)Z4

n (2.1)

whereZ0 = e−β2J is the Boltzmann weight of a broken bond, andβ = 1/kBT . The entropic
factor q − 2 accounts for the number of different coexisting phases which can occupy a
bubble. An analysis of theRG flow described by equation (2.1) shows that there is a finite
unstable fixed pointZc, besidesZ = 0 andZ = ∞. The quantityf = limn→∞ ln(Zn)/L

should be< 0 and coincide with the interfacial line tension forT < Tc. So, the region
Z < Zc corresponds to the low-temperature regime, because thereZ = exp(Lf ), where
f (f < 0) is the line tension. ForZ > Zc the line tension description does not apply,
since upon iterating equation (2.1)Z approaches infinity as exp

(
L2fb

)
, wherefb > 0 is

a sort of dense froth free energy which describes the system in the high-T phase. The
RG analysis provides the critical Boltzmann weight,Zc, and the interface critical exponent
µ(q), characterizing the vanishing of the interfacial free energy,f ∼ |T − Tc|µ, for anyq†.
Indeed, if we puttn = Zn − Zc, we get by constructionf (t0) = 2−1f (t1) = 2−1f (2yT t0),
which leads to the expected scaling off for t → 0, with µ = ln(∂t1/∂t0)/ ln 2 = yT .
By keeping the lengths of the system finite and equal toL andL′ = L/2, we also obtain

† As already stressed in [6], this approach is not able to show the expected change to first-order phase transition
at q = 4.
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the finite-size scaling (FSS) version of the previous law:f (t0, L) = 2−1f (2yT t0, L
′). Of

course, the thermal exponentyT also has the meaning of the fractal dimension of the critical
interface because the average number of broken bonds is obtained by differentiating lnZn

with respect tot0.
In the presence of random couplings and bond dilution,Zn is a random variable whose

distribution function,Pn(Z), has to be iterated starting from the initial form

P0(Z) = pδ(Z) + (1 − p)P0(Z) . (2.2)

Namely each accessible bond is given a weight,Z, according toP0(Z). p is the probability
that a given bond is not accessible to the interface. For a given realization of disorder (2.2)
in the whole structure, the partition function evolves from one stage to the next as

Zn+1 = Zn(1)Zn(2) + Zn(3)Zn(4) + (q − 2)

4∏
i=1

Zn(i) (2.3)

where the indices 1 to 4 refer to the fourn-order elements constituting an(n + 1)-order
diamond.Pn(Z) iterates according to the rules of the nonlinear composition of independent
random variables defined in (2.3). Fixed points of the mapping (2.1) are replaced by fixed
distributions.

It is easy to see that the component ofPn concerning the probability for a bond to be
infinitely hard decouples from the other quantities and iterates separately [9] as

pn+1 = [
1 − (1 − pn)

2
]2

(2.4)

wherepn is the probability for inaccessible macrobonds to occur through then-level lattice.
So equation (2.4) is nothing but theRG transformation for percolation onDHL, whose critical
fixed point is atpc = (

3−√
5
)
/2 [9]. As we will also discuss at the end of the next section,

this is a reasonably good qualitative model of directed percolation in2D.
The second component,P0(Z), of P0(Z) is related to energy randomness, and couples to

bond dilution underRG flow. Hence even in non-random energy cases,P0(Z) = δ(Z−Z0),
Z1 no longer possesses a binary distribution with values 0 andZ, even after the first iteration.
ThusPn(Z) always evolves towards a multivalued distribution function, like in the random
energy model.

In our model we verified that both dilution and disorder are relevant perturbations
of the pure system fixed point of (2.1). Furthermore, similarly to what happens in the
undiluted case [6], the impure system behaviours turn out to be always controlled byT = 0
fixed-point distribution functions. This is similar to what happens in analogous problems
[8, 12], where randomness is relevant and energy optimization criteria prevail with respect
to entropic considerations. Dilution, here, is a further source of disorder. So it is no surprise
that the dilute random system is governed by zero-temperature strong-disorder fixed-point
distributions for all dilution regimes. We examine properties of these distributions in detail
below by considering from the startT = 0 RG recursions.

We are then concerned with the iteration of the interfacial energy distribution starting
from one which introduces absent (i.e. inaccessible) bonds with probabilityp and present
(i.e. accessible) ones with probability 1− p. The energiese of the latter at then = 0
level are chosen according to a probability density,P(e) = uδ(e − 1) + (1 − u)δ(e + 1).
In the pure system we hade = 2J for all bonds. By decreasingu we expect to reach
criticality conditions similar to those found by risingT at non-zero temperature [6]. On
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Figure 2. Diluted DHL at its third growth stage. A particular
configuration of the froth obtained atp = pc andu = uc is illustrated.
Broken lines represent inaccessible bonds, full lines mark accessible
bonds with either energye = +1 (thick lines), ore = −1 (thin lines).
Notice the presence of a critical backbone connecting upper and lower
ends of theDHL. At T = 0 the froth steps on the minimal energy
connected configuration, as indicated by the asterisks.

a given sample, the interface at leveln + 1 can cross either of the two lattice branches
made by two linkedn-macrobonds, or form a bubble through both. The choice among
these three possibilities is only dictated by the criterion of energy minimization, provided
the n-macrobonds are globally accessible. Figure 2 gives an illustration of such aDHL

interface model at the critical dilution,p = pc. Monte Carlo iteration of the energy
distribution density is relatively simple and fast†. Starting with a large sample (∼2 × 105)
of bond energies we could iterate it up ton ∼ 20 without propagating too large statistical
uncertainties due to finite samplings of the distributions.

3. Numerical and exact results onRG flows

RG flows confirm the existence of a critical percolation threshold for absent bonds atp = pc.
This is indeed the threshold above which the interface can no longer cross the system, unless
at the cost of an infinite positive energy, even for finite system sizes. The numerical value
pc = 0.3820± 0.0008 compares quite well with the theoretical one. As in [9] we find the
influence of dilution on the interfacial critical system to be qualitatively different depending
on whetherp < pc, or p = pc.

In thep < pc regime forbidden regions do not percolate and only isolated finite clusters
of inaccessible bonds exist. Clusters are fractal on scales shorter than their linear size. On
large length scales they are homogeneously distributed and should not exert any particular
influence on the interface, except as an additional source of disorder. We observe in the
interface two distinct phases separated by a critical value,uc, of the disorder parameteru
(u/(1−u) gives the ratio of ferro- versus antiferromagnetic accessible bonds).uc of course
depends onp and on the fact that we were setting to unity the starting absolutee value.

Whenu > uc the interface is linear, its energy distribution has a mean value,〈E(L)〉,
which shifts as〈E(L)〉 ' 〈E0〉L � 0 (L = 2n is the length of theDHL at level n) and
a width, 1E(L), growing asLω, with ω ≈ 0.30. The interface is thus a directed path
on a DHL with the energy distribution discussed in [13]. Foru < uc we find a dense
foam of bubbles, whose energy density function has mean value〈E(L)〉 ∝ −L2 and width
1E(L) ∝ L. The central limit theorem applies to this distribution function which should
be asymptotically Gaussian. Atu = uc we have〈E(L)〉 ∝ Lyc and 1E(L) ∝ Lωc , with

† Starting form an ensemble consistent withP(e), at the(n + 1)-th iteration groups of fourn-macrobonds are
sampled and the least path-energy is chosen to be the actual value of that(n + 1)-macrobond.
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yc ' ωc ≈ 0.32, suggesting that on approachinguc the average interface energy should
scale as

〈E(p, u, L)〉 = A|u − uc|µL + BLωc . (3.1)

Our numerical estimate isµ = 0.93 ± 0.08. By further considering that the critical
interface is still linear, since its mass,M(L), scales asM(L) ∝ L, we find here
remarkable coincidences with the undiluted random-bond Potts interface [6], suggesting
that the observed transition should fall into the same universality class. Indeed, the linearity
of the interface and the value ofµ compatible with unity suggests that the randomness
produces Ising critical behaviour independent ofq as discussed in [6]. This conclusion is
corroborated by a study of the probabilityPl(n) that the interface forms a loop at stagen.
As in the undiluted case, this probability tends to 0 asn approaches infinity.

In the critical percolating regime,p = pc, both absent and present bonds percolate and
form incipient macroscopically spanning clusters which have strong effects on the interface
shape. Again two phases exist, separated by a critical value,uc, of u.

The interface is linear in the region aboveuc and the energy distribution function flows
underRG to a phase characterized by a mean〈E(L)〉 ∝ L and a width1E(L) ∝ Lω, with
ω = 0.48 ± 0.02, peculiar to a directed path confined on an essentially one-dimensional
structure (the percolation critical backbone). This is precisely the regime found for the
linear DPRM at the directed percolation threshold in [9].

When u < uc a dense aggregate of bubbles forms, saturating all paths which connect
the ends of theDHL, hence invading the whole percolation backbone of present bonds. The
energy has a distribution whose mean and width scale asLy and Lω, respectively, with
y = ω = 1.305± 0.006. Since the backbone has fractal dimensiond̄ = 1.30575. . .†,
we argue that the critical percolation geometry strongly controls the interface energy
fluctuations. Indeed these are of the same order as those of the percolation cluster mass
(ω ' d̄). The fact that the backbone mass and its fluctuations alone determine the interface
energy scaling properties is confirmed by the results foru = 0 (all bond energies equal
and negative), which yield the sameω ' d̄. Thus, backbone mass fluctuations scale like
the average mass, and the randomness in bond energies does not add new features to the
interface energy fluctuations.

At the transition point,u = uc = 0.661± 0.001, the scaling exponents of〈E(L)〉 and
1E(L) versusL are, respectively,yc = 0.50±0.02 andωc = 0.51±0.01. On approaching
uc the average interfacial energy fulfils a scaling of the form:

〈E(p, u, L)〉 = A|u − uc|µL + BLωc (3.2)

with µ = 0.94± 0.04, as illustrated by the collapse of data in figure 3. This value is not
incompatible with the undiluted froth model one [6]. However, collapse fits are not the
only way to estimateµ. In order to investigate the nature of this transition more deeply it
is also worthwhile calculating the scalings of interface mass,M, and probability of forming
loops,Pl(n), at leveln [6]. M grows asLdf . df indicates the interface fractal dimension,
and we find in the three different regimes:

u > uc df = 1.000 006± 3 × 10−6

u = uc df = 1.046± 0.006

u < uc df = 1.3054± 6 × 10−4 .

† Sinced̄ = ln(n(1−pc)/1)
ln(2/1)

, wheren(1 − pc) is the average number of present bonds forming the critical backbone,
RG gives d̄ = 1.305 75. . . .
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Figure 3. Data collapse of〈E(u, L, p = pc)〉/Lωc against |u − uc|µL1−ωc . We measure
µ = 0.94± 0.04 andωc = 0.51± 0.01. Scales are logarithmic on both axes.

The result foru > uc leads us to expect thatdf = 1 should be the exact value. Notice that,
as already mentioned,df ' ω ' d̄ in the saturated phase,u < uc (see also figure 4).

The loop probability is asymptotically independent ofn, Pl
n→+∞−→P∞, andP∞ = 2df−1 −1

[6] provides an alternative way to estimatedf . The following behaviours are found under
iteration (L = 2n):

u > uc Pl(n) ' A1e−bL

which impliesP∞ = 0, hencedf = 1. Notice thatA1 andb depend, of course, on the actual
u value chosen.

u = uc Pl(n) ' P∞ + A2

Lγ

with γ = 0.40± 0.01, P∞ = (2.3 ± 0.6) × 10−2, thusdf = 1.03± 0.02;

u < uc Pl(n) ' P∞ − A3e−cL

with P∞ = 0.236± 0.0009, which impliesdf = 1.306± 0.001. UnlikeP∞, A3 andc show
a dependence onu.

Obviously there is a linear interface foru > uc, while the interface occupies the whole
percolation backbone whenu < uc. Indeeddf ' d̄. Most interesting is the fact that the
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Figure 4. Plot of the interface mass,M, versus lattice longitudinal length,L, in the saturated
phase,u < uc, and at critical dilutionp = pc. M equals the directed percolation backbone
mass, which thus exhibits the same scaling againstL.

interface is no longer linear at the critical pointu = uc, becausedf is significantly different
from 1, in that case, and the loop formation probability does not behave as a marginal
field, as happened in the undiluted case [6]. SincePl is a relevant scaling field, logarithmic
corrections existing in the undiluted model disappear, and the critical interface is a branched
object, thus indicating that we are in the presence of a different, new type of criticality.

Moreover, theRG mappings ofPn(Z) at finite temperature evolve towardsT = 0
distributions, both within stable phase regions of parameter space and on approaching the
critical surface, showing that these phase transitions are also governed by zero-temperature
strong-disorder fixed points, as anticipated.

For p > pc there are, of course, no paths joining the ends of theDHL, because accessible
bonds do not percolate any more.

Let us now discuss in more detail the percolative landscape across which the interface
develops whenp = pc. The probability of a present bond is% = 1 − p, which transforms
underRG as

%n+1 = %2
n(2 − %n)

2 . (3.3)

The fixed point%c = 1 − pc sets the percolation threshold. So atp = pc a critical cluster
of present bonds also exists, as already noticed. Considering the anisotropy ofDHL, which
naturally introduces a preferred direction, the longitudinal one, for the percolation process
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(RG recursions (2.4) and (3.3) are explicit consequences of such a directedness), and taking
into account theDHL fractal dimension, equal to 2, the critical percolating cluster on it is
eligible to represent a sufficiently faithful approximation of the actual structure of the2D

directed percolation cluster. The better such a circumstance can be confirmed, of course,
the more value should be added to our investigation of interfacial properties onDHL. Of
course, there are limits to such an attitude: it should also not be forgotten, for example, that
isotropic and directed percolation are not distinguishable on theDHL.

Since the Potts interface in its saturated phase occupies the whole directed percolation
backbone, we are able to use such an interface as a probe of backbone structure by the
RG analysis. The directed backbone fractal dimension,d̄, has already been determined
both analytically (see footnote on page 2444) and numerically by evaluating the saturated
interface mass scaling, shown in figure 4. We found a value surprisingly close to the one
known for two-dimensional directed percolation (d̄ ≈ 1.31 [14]).

The correlation exponents of percolation,ν‖ andν⊥, are equally accessible onDHL. From
(3.3) we calculate the rescaling of1% = % − %c:

1%′ = λc1% = by%1% λc = 6 − 2
√

5 . (3.4)

The two correlation lengths, parallel and normal to the preferred direction, diverge near%c

as

ξ‖ ∼ |% − %c|−ν‖ ξ⊥ ∼ |% − %c|−ν⊥ . (3.5)

Manifestly, on this hierarchical latticeξ‖ concerns the correlation in the longitudinal direction
connecting the two ends of the lattice. Thus, ifξ ′

‖ = b−1ξ‖, with b = 2 (length rescaling
factor), it follows:

1

ν‖
= ln λc

ln b
= 0.611 516 17. . . and ν‖ = 1.635 279 7. . .

(the two-dimensional exponent is slightly larger,ν‖ = 1.735 [15]).
To deriveν⊥ we define the distance along the direction orthogonal to the lattice as equal

to the number of branching levels separating two given sites. With such a convention the
average transverse size of the percolation backbone,L⊥, then transforms according to

L(n+1)

⊥ = 2%2
n(1 − %n)

2L(n)

⊥ + 2%3
n(1 − %n)3L(n)

⊥ + %4
n2L(n)

⊥

%n+1
. (3.6)

Applying finite-size scaling to (3.5) we getξ⊥ ∼ Lν⊥/ν‖ , at % = %c. From equation (3.6) it
follows L(n+1)

⊥ |%c
= 4%2

cL
(n)
⊥ |%c

, thenν⊥/ν‖ = ln 4%2
c/ ln 2 = 1/ν‖, andν⊥ = 1. These results

should be compared with the two-dimensional exponents:ν⊥/ν‖ = 0.633; ν⊥ = 1.097 [15].
Finally the simplicity of ourRG also allows for iterating the number of steps on which

the saturated interface is linear, and which therefore connect different blobs of the directed
backbone. From a percolation point of view these are just the ‘red bonds’ forming one-
dimensional links of the directed backbone. Like in isotropic percolation [16] one can
show that the directed backbone red bond mass,MR, at %c has a scaling formMR ∝ LDR ,
with DR = 1/ν‖, when the system has linear sizeL. We measured a numerical value
DR = 0.6111± 0.0006, which agrees fairly well with the above theoretic prediction of 1/ν‖
[17]. Figure 5 shows a plot ofMR versusL.

The percolation critical exponents calculated above for our simplified model of directed
percolation are remarkably consistent and close to the truly two-dimensional ones, that we
hope the same could apply to the scaling properties of the Potts interface we have determined
here.
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Figure 5. Plot of the ‘red bond’ mass,MR, in the critical percolation backbone, versus the
lattice longitudinal lengthL.

4. Conclusions

In this work we addressed the critical behaviour of a Potts ferromagnet in the presence of
both exchange disorder and dilution. The scaling properties of the interfacial free energy
were considered and dilution acted in the form of percolative regions not accessible to
the interface, due to extremely strong ferromagnetic couplings. By restricting interfacial
configurations to those which can be hosted by aDHL, an RG analysis of the line tension
can be carried on through a very accurate numerical procedure. For all dilution regimes
considered the interface scaling turns out to be controlled byT = 0 fixed-point distributions.
This makes the analysis relatively easier, sinceT = 0 recursions for the interfacial energy
can be studied more effectively than theirT > 0 counterparts.

When accessible regions are above their percolation threshold (p < pc), dilution does
not seem to modify interfacial scaling with respect to the undiluted case. The three regimes
occurring in this case are those on the basis of which the Ising-like nature of criticality
in disordered Potts ferromagnet in2D could be argued [6]. New scalings occur when
dilution is at threshold and the interface has to develop within the incipient infinite cluster
backbone. When, atT = 0, u is such that it guarantees a sufficient dominance of positive
energy bonds the interface remains linear at large scales and appears to behave in the same
way as a strictly linearDPRM would in such an environment [9]. As in the corresponding
regime above percolation threshold, ramification is fully inhibited ifu > uc. However,
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the exponentω ' 0.48 falls in a new universality determined by the backbone geometry
limiting the linear interface [9].

A completely new behaviour is realized right atu = uc when dilution is at threshold.
In such conditions we get clear evidence that the interface has non-zero probability of
branching and thus behaves as a fractal. Its dimension slightly, but definitely exceeds 1.
Of course, by construction, onDHL a strictly linear interface cannot behave as a fractal.
However, a fractal dimension equal to 1 would persist in the linear regime when replacing
the DHL with more complicated lattices allowing, in principle, for a fractal linearDPRM

geometry.
The above interface scaling regime atu = uc is the first critical one with non-trivial

fractal geometry met so far in this kind of study, and indicates the highly non-trivial effect
that backbone geometry can exert on the interface and on the critical behaviour of the system.
So far, borderline regimes between the linear and maximally branched ones in such froth
models were never seen to allow for non-zero, intermediate looping probability. Thus the
critical behaviour of the interface could not be seen to be different from the linear, Ising-like
one at low-T [6]. The values ofµ anddf estimated for this regime lead toν = 1/µ ≈ 1.06
or ν = df ≈ 1.046 for a critical Potts model subject to threshold dilution and disorder. This
can be concluded within the same limits of the arguments developed in [6]. Like in that
undiluted case, the value ofν, being associated to aT = 0 fixed distribution, is universal
with respect toq.

In the last regime, with critical dilution andu < uc, we could realize how the interface
can become a sort of probe for the structural properties of the backbone. The interface mass
M scales as the backbone mass with longitudinal distance. Quite remarkably, the energy
fluctuations are fully determined by backbone mass fluctuations here. These backbone mass
fluctuations in turn scale with the same exponent as the total average mass.

As an instructive exercise adding credibility to ourDHL model as a good qualitative
picture of the situation on a2D Euclidean lattice, we produced here results forν‖ and ν⊥
and the ‘red bond’ dimension of directed percolation. No similar determination ofν⊥ was
produced before, to our knowledge. These results altogether appear remarkably consistent
with the numerical estimates in2D [15].
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